Ecology – Biology 3500
                                                                                                                                 Dr. Adams
COMMUNITIES and ECOSYSTEMS UNIT

Chapter 16:  Species Abundance and Diversity -- Community Structure
  Definition of Community
    Guilds
(used mostly by zoologists); growth (life) forms (used mostly by botanists)

 
Species Abundance: relative abundance in a community -- most species are moderately
         abundant; fewer species are very abundant or very uncommon (see Fig. 16.3). 
      The Lognormal distribution for abundance:
        LARGE samples tend to show this distribution (see Preston's Canadian moth data on my
        website). This distribution of species undoubtedly is influenced by many biological factors,
        but its utility is in its predictive value.

 
Species Diversity:  defined by two factors -- 1. the number of species in a community, or
        species richness, and 2. the relative abundance of species, or species evenness.

    Quantitative Index
of species diversity -- the Shannon - Wiener index (will use in Lab 13):
                   s
      H' = - Σ pi ln pi      where p = the proportion of a particular species, & s = # of species
                  
i =1   
     
This index gives a quick comparison number for species diversity in different locations; see
            sample calculations on page 357.
  
    Rank-Abundance curves -- see examples on pages 351 - 352 (will also use in Lab 13)
        Important question:  Has any habitat been sampled for ALL known species?  Will mention
            ATBI initiative in the Great Smokey Mountain NP.

  Environmental Complexity -- Species diversity higher where environmental complexity is higher.
        Remember yet again (!) MacArthur's warbler study (see Fig. 16.9 & 16.10).
        More complexity = more possible "niches."  Studies have shown a positive correlation between
            environmental complexity and species diversity in groups such as: mammals, lizards, reef
            fish, marine gastropods, plantkton.  Most of these represent animal groups, whose diversity
            is largely dependent on PLANT diversity.  So what about plants and phytoplankton?
        Plant (and algal) diversity: for various species of plants, which largely compete for the same 
            resources, there seems to be a violation of the competitive exclusion principle . . . so how 
            do so many plant species occupy a single community?  Turns out that very specific needs are
            quite different between plant/algal species.
          Specific studies -- In both aquatic and terrestrial habitats, there is nutrient heterogeneity.
             1.  Tilman and algae:  see Fig. 16.11.  Algae require very specific balance of certain minerals.
             2.  Lebo and particulate concentrations (nitrates/silicates) in lakes -- Fig. 16.12.
             3.  Jordan:  Soil quality (nitrates, water, etc.) and species/community differences in the
                    tropical rain forest; see Figs. 16.13 & 16.14.
             
      A significant trend:  As nutrient availability INCREASES, plant/algal diversity in the community
        DECREASES.  WHY?  What this also means is that fertilization will DECREASE diversity (see
        Fig. 16.16 for long-term feritilization study at Rothamsted, England).  Also see this with both
        above ground (mushroom) and below ground (mycorrhizal) fungal diversity with increased
        nitrogen application (which also results in more acidic conditions). So what happens is a shift 
        from efficient nitrogen utilizers to a few acid-tolerant, high soil fertility, competitive species.

  Disturbance and Diversity 
    For several chapters, we've been talking about several influences on species numbers taking place
        (competition, predation, parasitism, etc.) resulting in some sort of equilibrium state (K).  Clearly,
        this is NOT what conditions are like in the "real" world.
    Disturbance defined -- understand that, just as "stable" is different for different organisms,
        "disturbance" is similarly varied in what it means to different organisms.  Indeed, what we might
        consider "disturbance" (fluctuating temperature/salinity) could be part of the natural conditions of
        certain habitats (temperate biomes/estuaries).  Basically, any event (in time) that disrupts the
        community/ecosystem such that resource/substrate availability changes and, in turn, makes it
        possible (at least temporarily) for new individuals to get a foothold.
    Disturbance can be characterized by two factors:  frequency and intensity.

    Intermediate Disturbance hypothesis -- see figure 16.18
       
Connell suggests that high diversity is a consequence of continuously changing conditions, and
            that intermediate levels of disturbance promote the highest diversity.  WHY does this make
            some sense?  Low levels of disturbance lead to the strongest competitors excluding others
            (think of a climax forest), and high levels of disturbance remove a number of species which
            require some time to establish themselves.  Intermediate frequency of disturbance allows a
            lot of colonization without competitive exclusion over the long run.  Remember the "ruderals
            vs. competitive species" discussion in Chapter 12??
        Example:  in the Intertidal
            Sousa -- boulder size and frequency of wave displacement
                Big boulder = infrequent movement (1% turned over/month); Intermediate (9%); and
                Small boulder = frequent movement (42%).  The "infrequent" (big) boulders supported
                1 - 3 species for the most part, the "frequent" (small) boulders supported mostly 1 species,
                and the intermediate boulders typically supported 3 - 5 species.
        Example:  Prairie Dogs in the Grasslands
            Whicker and Detling's work -- turnover of soil and plants; aeration of soil

Chapter 17 -- Species Interactions and Community Structure
  Community (Food) Webs -- can be incredibly complex trophic interactions
        Obviously, some interactions will be strong, others weak, in terms of influence on community
            structure.  (See top of page 368; interactions with the reed plant Phragmites)

  Indirect Interactions -- influencing another species indirectly through yet a third: 
      Certain commensalisms can be indirect -- beaver/cottonwood/leaf beetle example
      Apparent competition is indirect -- example:  two prey species "share" a predator; increases in
            one prey species increases the number of predators, and, in turn, impacts other prey species

 Keystone species -- those feeders (consumers) or those being fed upon (can be producers or
        lower order consumers) that have the absolute strongest influence on community structure,
        inordinately when compared to other species, and whose absence would radically alter the
        stability, and ultimately diversity, of the system.  These are NOT typically the most abundant;
        indeed, keystone species are virtually never the most abundant.  For instance, some predators
        help keep prey species below levels where they might competitively exclude others, allowing
        for coexistence and not exclusion, thereby maintaining or increasing diversity.
    Paine and marine communities:  as diversity of plankton communities increase, proportion which
        are predators also increases (in Atlantic continental shelf plankton community: 81 species, 16%
        predators; in Sargasso sea: 268 species, 39% predators).  When comparing temperate to
        tropical intertidal communities, there was one top predator in each (a sea star), but many more
        mid-level predators in the tropical intertidal feeding on more prey species (see Fig. 17.9). 
      Experimental removal of sea stars:  Paine found that removal of the top sea star (Pisaster) in the
        temperate intertidal resulted in a loss of invertebrate diversity of nearly half -- from 15 to 8
        species.  Within just a few months, one barnacle species became dominant, but was crowded
        out within a year by mussels and another barnacle, which became the dominant two species.
        Similar results were shown with removal of the top sea star (Stichaster) in a New Zealand
        intertidal community (20 to 14 species) with a mussel increasing coverage significantly (See Fig.
        17.10).  When Paine additionally removed a vigorously competitive brown alga as well, the results
        were even more dramatic, with the mussel becoming even more abundant.
    Lubchenco: Algae (Enteromopha/Chondrus), Littorina snails, Carcinus crabs, and seagulls
        In tide pools (that remain submerged), diversity highest with intermediate Littorina densities. In
        emergent habitats, highest diversity is with lowest Littorina density.  WHY? You need to under-
        stand the interactions between ALL listed "players" in the community.
    Power and fish in the Eel River in northern California:  at the base of the food web is the alga
        Cladophora, fed on by the larvae of chironomid midges.  If remove top predators (roaches
        [minnows] and steelhead trout), the algal growth blooms.  Or, in other words, when these fish
        are present, the algal mats decrease significantly by midsummer.  WHY?  Fish feed on midge
        larval predators.
    So, what is a keystone species?  A species whose influence is disproportionate to its biomass. What
        this means is that a keystone species is NOT the same as a dominant (most abundant) species.

  Mutualistic Keystones -- Cleaner fish example; Ants (as seed-dispersers) example
     The cleaner wrasse (Labroides dimidiatus) can remove and eat 1200 parasites a day from client
        fish species.  Disappearances/removals of the wrasse reduced fish species richness by nearly
        25%, while additions of wrasses to wrasse-free communities increased the richness by 25%
        (four month timespan in Egypt's Ras Mohammed Nat'l Park) (Bshary, 2003).
     Ants are responsible for 30% of seed dispersal in South African natural areas.  Invading
        Argentine ants, which do not disperse seeds, have displaced the natural ants in some places. 
        Large-seeded species do not recruit much at all in communities with the Argentine ant;
        instead, these seeds are eaten by rodents or destroyed by fire.
     Many native pollinators in the U.S. have been excluded by honeybees.  Reason for concern?

Chapter 18 -- Primary Production and Energy Flow
    Productivity -- Know primary, gross primary, and net primary production; also secondary
       production.  Biomass comes from inorganic molecules w/ a source of energy (sun, mostly).
       Net primary = Gross primary - producer respiration (producers own energetic needs).

    Remember trophic levels:  producers, primary consumers (herbivores), second + level
        consumers (carnivores).  Omnivores and detritivores.  Above primary consumers, many
        species can act at more than one trophic level.

  Terrestrial -- largely limited by temp., moisture, and nutrients (Have we heard that before?)
    Actual Evapotranspiration (AET):  measure of the amount of moisture lost from the landscape
        (evaporation) and from plants (transpiration); AET highest in warm moist places, and
        productivity is highest in these places as well.  Works across ecosystems, and within the same
        ecosystem (tallgrass to shortgrass prairie in east to west gradient) across a temp/precip
        gradient (see Figs. 18.2 & 18.3).
    Soil Fertility (see Fig. 18.5) also plays a role in explaining variability in productivity under similar
        temp/precip regimes.  Increased nutrient (P, N, etc.) availability, not surprisingly, increases
        productivity (remember, though, that increased nutrient availability can DECREASE diversity)

  Aquatic -- nutrient, light (for most) and, to a lesser extent, temperature driven
    Higher nutrient availability, particularly phosphorus (and nitrogen), increases algal biomass and
        productivity in lakes.  When lake system fertilized with P, N and C, we see exactly what we
        would expect -- increased productivity.
    Marine productivity -- highest in shallow seas along continental margins and along equator where
        there is significant upwelling; marine production is lowest in deep open ocean (Fig. 18.8)  WHY? 
        (Big hint:  n & l)  In the Baltic Sea, nitrogen is a limiting factor to overall productivity (Fig. 18.9);
        nitrogen seems to be an important factor in saline environments.

Primary Producer Diversity
        A couple of straightforward relationships:
    Higher terrestrial plant species richness results in higher above ground production and biomass
    Higher aquatic algal diversity similarly results in higher nitrate uptake and algal biomass

So far, we've looked at effects of physical and chemical factors on primary production -- these are
    the so-called bottom-up controls; next we look at the influences of higher trophic levels -- the
    consumers, what we call top-down controls. 

Consumer influences --
   
Top-down controls suggest the trophic cascade effect, where effects of the top-level
        consumers cascade down through the food web.  Remember the effects of the top level fish on
        algal productivity in the Eel River?  This is exactly what we are talking about here.  Another example
        is shown on pages 392-393 (see Fig. 18.12).  Notice that the top level consumer has alternating
        effects (increase-decrease; Fig. 18.13) on successively lower trophic levels to a point. This is
        basically what we were talking about with the algae/Littorina snails in the tide pool example above. 
        Also understand, however, that this type of cascade is more likely to take place in ecosystems
        with lower diversity/complexity (WHY?) and seems to be easily detectable in some aquatic eco-
        systems, though, certainly at the top levels, we can see direct effects of the predators on at
        least the next level down (remember also the lynx/hare/willow example).
    Grazer communities -- in the African Serengeti.
        Rainfall (obviously) increases savanna productivity.  Interestingly, grazing does so as well, by a
        phenomenon called compensatory growth (we talked about such plant responses previously). 
        Such growth was highest under intermediate grazing conditions(disturbance; hmm, where have we
        heard about intermediate distrubance before?); too heavy and plants have reduced ability to recover. 

Secondary Production
  Trophic levels -- Energy losses (indicating a certain level of ecological efficiency) limit the number
        of trophic levels.  Trophic dynamics leads to energy and biomass pyramids, which we will
        discuss more later (see Fig. 18.18 & as well as a diagram attached to this handout).